The Data Standard

The Data Standard Audio Experience with Nivi Arunachalam
Nivi Arunachalam,Technology Leader, joins The Data Standard to talkabout data quality.

Episode Summary

Data quality is one of the main challenges in data warehousing and data engineering. If you let inaccurate or inconsistent data get into your system, you risk driving insights that don’t bring any value to your analytics and machine learning projects.
In this episode of The Data Standard, host Catherine Tao sits down with data engineer and technology leader Nivi Arunachalam to discuss data quality.
Data warehouses are expensive to build, so you can’t afford to base decisions on poor-quality data. If you let it get in, you lose credibility and risk data downtime.
To prevent it, you need to ensure data quality at the source. You need to understand the entire data flow, from procurement to the moment it enters the warehouse. That’s how you ensure data consistency and accuracy.
Information biases are quite common when relying too much on the people side. Relying on robust tech solutions when collecting, handling, and processing data helps to eliminate any information bias.
Tune in with Catherine Tao to listen to this episode, as Nivi Aruanachalam goes deeper into data quality and ways to identify and mitigate potential issues.

Meet the Hosts

Catherine Tao

Data scientist at The Data Standard
Catherine Tao is a tech enthusiast looking for new methods for building connections with businesses around the world. Her extensive knowledge of data science allowed her to develop new solutions and implement them into existing ecosystems. She is currently working as a Data scientist and Exclusive Podcast Producer at The Data Standard.

Nivi Arunachalam

Technology Leader & Data Engineer
Nivi Arunachalam is a data engineer with extensive experience in data warehousing, data management, and data governance. She is also a technology leader with a PMP, CFA, and MBA in Finance.